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SUMMARY

The paper is concerned with the representation of mechanical
behavior of non-linear solids with memory. The nature and limi-
tations of integral representétion of Fréchet are discussed.
Definitions of state and state Variables, which are based on obser-
vable histories, are introduced. These notions give rise to dif-
ferential equation representation of behavior discussed in the latter

part of the paper.
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1. INTRODUCTION

In elastic solids the stress depends on the deformation existing at the time
of measurement of the stress. For inelastic solids, such as viscoelastic or plastic
materials, this assumption is no longer valid. The current stress in such a solid
may depend in somé manner and degree upon the:deformations which existed in it prior
to the time of measurement. From the point 6f view of classical continuum mechanics
the description of mechanical behavior of inelastic solids would therefore involve
functional relationships between the stress and the deformation gradient histories.
Green and Rivlin [1] and later Green, Rivlin and Spencer [2] have shown that the

" dependence of the stress on the history of deformation gradient cannot be arbitrary.
It is subject to two major réstrictions. The first of these arises from the fact
that a simultaneous rotation of the deformed body and reference system must leave
the stress components unaltered. The second restriction comes from any symmetry
which the material may‘possess in its reference state. These authors have also con-
structed integral representations‘of the functional dependence of the stress on the
history of deformation gradient. A recent review of modern developments in the con-
tinuum mechanics of inelastic solids has been given by Rivlin [3].

The present paper is concerned with a critical review of the subject from the
point of view of an experimenter. The above mentioned fheoretical'work provides the
experimenter with the form or structure of the relationship which exists between

‘fhglﬁistories of stress and strain. The task of filling this structure with phys-

_;iééliinformation is left to the experimenter. It is also up to the experimenter to
lﬁ;écover whether a given structure constitutes a convenient tool for the description

,;of méchanical behavior of a given solid. It is hoped that the present survey can

_béiof help to the experimenter in the performance of this double task.

| For reasons of simplicity, most of the paper is rgstricted to the study of

a one-dimensional situation, Two brief introductory sections are followed by a




section on the strain response to a simple family of stress histories. This section
serves to illustrate a fundameﬁtal step in the study of functionals.

It is shown in Sections 4 and 5.that for certain solids Fréchet's integral
representation of mechanical behavior would involve a prohibitiyely large number of
multiple integrals for the stress or strain histories of interest. A more con-
venient representatiop of mechanical behavior for such solids could be developed
by generalizing the notion of piece—wise smooth functions to functionals. An
attempt in this direction was fecently made by Onat and Wang [u4].

Sections 7 and 8 are devoted to a discussion of the differential equation
represehtation of mechanical behavior. This mode of representation, which is
intimately connected with the notions of state and state variables, has not as
yet received the full attention of the workers in the field, especially in the
area of finite deformationén |

Section 7 contains a brief discussion of the notions of state and state
variables and illustrates the circﬁmstances which allow one to represent a;given
history dependence by a system of differential equations. It is noted in this
section that the differential eqﬁations representation constitutes a natural tool
for the description of the piece-wise smooth behavior encountered in plastic or
nearly plastic solids.

Ordinary plastic solids, such as structural metalsfaf.boomftempepature>and
at very slow strain rates, are time independent; the current strain in such ma-
terials depends on the path of stress history in the stress space, but it is in-
dependent of the sﬁeed with which the stress point moves on this‘pathe In spite
of this simplification it is not convenient to express the path dependence of
the strain by means of an integral representation because of lack of analyticity
associated with the question of loading and unloading. In structuralvmetals sub-
jected to high strain rates or temperatures the current strain dependéhén both

the stress path and the speed of the stress point on this path and the above
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‘short (0,e) on the observation interval [0,TI. Different inputs, say, o

mentioned difficulty associated with loading and unloading continues to exist. The
representation of mechanical behavior is more difficult in this case than in
ordinary plastic solids; however the differential equation representation for plas-
tic solids which is discussed briefly at the end of the paper can easily be modi-
fied to account for the rate effects.

The last section of the paper is concerned with the questions of repre-

sentation in the case of arbitrary deformations.
2. PHENOMENOLOGICAL STUDY OF MECHANICAL BEHAVIOR

We wish to review briefly the main steps involved in the phenomenological
study of mechanical behavior of a solid. For reasons of simplicity we first
confine ourselves to the simple case of tensile test which enables cne, in prin-
ciple, to study homogeneous deformations of an initially isotropic solid under

the time dependent uniaxial tension. We shall be interested in small isothermal

.deformations.

The study begins with the preparation of a number of specimens which at

%

. ]
"the start of testing are identical in every respect.

A typical experiment involves, if a stress controlling machine is at -our

.disposal, application of time dependént stress o(1) on the time interval [0,T]

and observation of the resulting time dependent strain e€(t) on the same interval.,

: | _ T T
The result. of such an experiment is an input-output pair (ogr), eér)) or for

(1)

a °

o(n) may be applied to different identical. specimens to obtain corresponding

(1) )

outputs € o e - The result of such a multiple experiment is a set of

1)

[ ]

ey L o™,y

input-output pairs (o

% : ‘ '
Reproducibility of tests is a necessary condition for the specimens to be iden-
tical. Sufficient conditions for identity are more difficult, if not impossible,
to elucidate. ' g ‘ ' o
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The experimenter would consider that a sufficient insight is gained into the
mechanical behavior of the solid by a multipleiexberiment, if for the stress his-
tories (loading programs) o(t) of interest he can gueés with reasonable accuracy
Qhat the correéponding strain responses €(1) would be without pepforming further
tests. When this stage is reached the experimenter would like to translate the
knowledge on mechanical behavior thus gained into the ma%hematical language for
the purposes of transmitting it to the designer or the analyst.

The task of the experimenter is then to discover and to reﬁresent the
relationship that exists, for a given inelastic solid, between stress and strain
histories.*

Problems similar to the one discussed above arise in the study of com-
munication and control systems under the name of Characterization and Representa-
tion Problems or simply the Identification Problem [5]. It is hoped that the
workers in mechanics would find it profitable to follow the considerable amount
of progress which is being made in the study of the identification problem.

Before closing this section we must point out that the study of the mech-
anical behavior is often muchbmore difficult than the previous remarks would in-
dicate. For instance in tests involving short times, such as wave propagation
and impact expefiments, the measurement of stresses is nearly impossible, so that
the experiment provides one with wave shapes and speeds measured at various
locations instead of a set of input-output pairs (o,e). The task of determining
mechanical behavior of the solid from the latter evidence is an involved one but

it is not unrelated to the class of problems discussed in this paper.

S :

-7 A more thorough study of mechanical behavior would involve histories of

" temperature, heat flow, etc. Inclusion of these would complicate the picture
but would introduce no new conceptual difficulties. '




3. MATHEMATICAL PRELIMINARIES

We now introduce several basic concepts which are indispensable to the study
of input-output pairs. We do this not in the abstract but by referring to the
physical situation discussed above.

We start by assuming that at time T = 0 there is available a set of idenuical
specimens composed of the given solid. The specimens carry no stress at this time

and the strains for T 2 0 are measured with respect to the configuration at T = 0

so that

o(t) =0, e(t) =0 when T = 0. (1)

We restrict the attention to the loading programs o(t) which are continuous
on the observation interval [0,T] and vanish, as (1) indicates, at Tt = 0. We shall

assume that the strain responses e(1) corresponding to continuous strain histories

fa
w

o(t) are also continuous.
In each test the solid assigns to a given o(t) a response e€(1) on the inter-

val [0,T]. An electrical engineer would, therefore, consider the solid or the

specimen as a black box. A mathematician would, on the other hand, regard the solid

as an operator and would use the following notation,

e = Flo] . (2)

to express.the relationship between continuous input—butput pairs defined on [0,T].
One would remain outside the realm of mathematic; or ﬁhysics if one did not
assign somé properties of regularity to the operatc‘;r»F° Here we shall assume that_
the 6perétor F for the solid of interest, or for short, the solid F, is continuous.
For the purposes of the preéent paper it may suffice to adopt the following dé—

finition of continuityf

& :
We further assume that the solid is in the zero state at T = 0; this means that
o(t) = 0 for T 2 0 implies e(x) = 0 for T 2 0. i

—;




It is said that the operator F is continuous, if for each e > 0 there exists

a § > 0 .such that the inequality
le(l)(T) - 8(2)(T)| <e, on[0,T] (3)

holds for the strdain responses produced by any two stress histories which satisfy

the condition

Io(l)(r) - 0(2)(I)| <6, on [0,T]. (u)

In more physical terms continuity of F implies that the strain responses
obtéfned in tests copducted with slightly different loading programs différ from
each other only slightly;* | | | |

It may be safe to assert that most solids of intepgst exhibi? this property.

However, as is well known, the Voigt solid constitutes an important exception. In

this solid slightly different strain histories may produce different stress his-

tories.

Another important property of F foilows from‘the observation that the
happenings'in the future cannot affecf the present and therefore the strain ét
time t depends oﬁly én the stresses on the interval [O,t]. Thiélobservation im-
plies that the operator F must ﬁave the propert& of causality expressed by the
symbolism , | | | |

t
e(t) = Flo(t)]. . (5)
o -

The above equation represents, for a given t, a functional of the stress histories

defined on [0,t].
Another property which we may assign to F is related to the question of

"aging". The state of the solid at T = 0 may be such that, under the absence of

o

«
Here the word"different"is used in the sense of inequalities in (3) and (4).




stress and strain for 1t 2 0, mechanical behavior of the solid may not be affected-
by the passage of time: that is to say, if e(t) and o(t) is an input-output pair,

then the following histories would also constitute an input-output pair:

IA

0 0. o TS X
e, (1) = » 0y(1) = (6)
e(T-x) o(t-x) x

-IA
)

for any non-negative x. Solids which have the above property are called time-
invariant or non-aging solids. It can be shown that for time-invariant solids

the operator F may be replaced once and for all by a single functional defined

on the interval [0,T].
4, STRAIN RESPONSE TO SIMPLE LCADING PROGRAMS

In this section we wish to illustrate several concepts introduced in the
previous sections. The present section will also prepare the ground for a dis-
cussion of integral representations of mechanical behavior.

*We consider the set of loading programs (Fig. 1) defined by
) 1 T, . 0<1¢g tl
5(1) = ot (7)

1
Gl + (02—01)_—t~2-'_-t—l, ‘tl £ 7T S‘t2

where tl and t2 are given fixed times and 9 and o, are arbitrary constants
satisfying the inequalities

< < M.
0 %o, and o, £ M (8)

We wish now to focus our attention on the dependence of the strain € at time t2
on the stress histories of the type (7). Since each loading program belonging
to the above set is fully characterized by the magnitudes 9y and Ops the continu-

ous functional F in (5) reduces, for argument functions defined in (7), to a




continuous function of Gl and 02:

_t
e(t) = F[oét}]' = f(ol,oz)e (9)

The above passage from continuous functionals to continuous functions constitutes
a key step in the study of functionmals.
We must emphasize again that in (7) ty and t, are kept constant but o, and o,

are varied so that the dependence of.f on tl and t2 does not entgr into the present.
considerations.

A multiple experiment, composed of n inputs of the type (7) and the corres-
ponding outputs, determines the value of f at n points in (8). If these points are
chosen suitably then the experimenter wouid obtain a very good idea as to what sort
of function f isg he woula then‘be able to construct an interpolating function f*
which would constifute an approximate representation of f even over the points which
are not covered by ?he‘multiple experiment. We note that theichdice of n-points
may depend on the nature of f (for instance, more experimental points would be needed
over the subregions of (8) where f is "steep"). The mathematical representation of
fhe ipteppolating functions f* would also depend on the nature of f, as we shall
presenfly see.

We wish now to review the form of f (01,02) for some basic solids. For linear

elastic solids we have, of course,

g

e(t) = £(o,,0,) = ‘EQ‘ . (10)

On the other hand, for linear viscoelastic solids

£ =a0) +ay0,, (11)

where a, and a, are constants. We note that in this case f, the present value of

strain, depends on the stress applied at previous instances through the presence




of oy in (11). For most polymers (1ll) constitutes an excellent approximation for f
provided that o and Ops and hence M, is suffic?ently small. TFor higher values of M,
f becpmes non-linear. In some cases the non-linearity in f can be adequately repre-
sented by adding higher order times to (11). For instance an experimental study of
polypropylene fibers by Ward apd Onat [6] indicated that up to the extensions of 2%

2

1t a0 T T 354,09:0¢

f = a0
‘ g,k

1 (12)

K
The adequacy of the above representation may indicate that the partial derivatives
of f up to the fourth order are continuous in the domain of interest.

We next consider the rigid~plastic material defined by the stress-strain
diagram shown in»Fig. 2 where Y is the yield stress and Et is the tangent modulus
which for reasons of simplicity is assumed to be constant. The function f(ol,oz),

which describes the mechanical behavior of this material for stress histories (7)

is therefore given by

0 . 0 g cl, A §
_ 1
f = Et(ol—Y), o, 2 Y, o, >0, (13)
Loy, o 27, o.>a0.
E, 2 2 > Yo 7 9

Note that although f is contiguous, its first derivat}ves exhibit discontinuities
on the interfaces of the domains indicated in (13);

The following remarks concerning f defined in (13) will be useful in the
discussion of integral representations. Since f is continuous it can be approxi-
mated to any degree of accuracy by a polynomiél P (01,02) according to the theorem
_of Weierstrass (see [7], p. 481). However the degree of the Weierstrass polynomial
which achieves an acceptablé approximation over a closed region of interest may be

very high due to the presence of discontinuities in 3f/30. and 3f/362 in (13).

1

To elaborate on this remark we may consider the simple case of Y = 0 and Et =1

where f becomes:
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f = max(ol,02) (14)

We now consider the polynomial approximation characterized by the inequality and

o
the domain given below :

|max(cl,o2) - P(ol,02)‘ <e on0<o,,0,51 (15)

It can be shown, using a result of Bernstein [8] concerning the related function

y = |x| that the degree N of the polynomial P(ol,02) in (15) must at least be
N = f%ae This result indicates once more that the Weierstrass polynomial is not

a natural tool for the representation of the piece-wise linear function defined

in (13).
5. INTEGRAL REPRESENTATION OF MECHANiCAL BEHAVIOR

We begin with linear solids. A solid is said to be linear if the operator
F representing the mechanical behavior of the solid has the propérties of homo-

geneity and additivity:

(a) F[Ao] = AF[o] where X is a constant,

) FLos {27 = et 4 50?1,

The last property implies that the strain response of the material to the sum
of two stress histories is equal to the sum of the strain responses to the indi-
vidual stress histories“(the principle of superposition).

Riesz's weilAknown wopk onllinear.functionals (9] when applied to the pre-

sent case provides, for differentiable stress histories, the following integral

representation:

% .
It will be assumed throughout the paper that all relevant quantities have been
properly non-dimensionalized.




- ll_—
t
e(t) = | J(t,1) gg'dT (18)
2 dT 9

0

where the function J(f,r) is independent of the argument function and characterizes
the linear solid.

When the solid is time-invariant then J becomes a functiqn of the single
argument (t-t). The types of experiments needed for the establishment.of linearity
of a given solid and for the measurement of the associated creep function J(t)
or fhe relaxation modulus G(t) are well—knqwn* and will not be discussed.here°

Many solids of interest, such as metals subjected to high stresses, tempera-
tures or stress rates, exﬂibit inelastic béhavior but do not possess the properties
(a) and (b) of linearity.

Représentation of mechanical behavior of such nonlinear solids is a more
difficult problem. We have, of course, the following result based‘on Fréchet's
work on nonlinear functionals [11] which is at our disposal for the purposes of

representation:

A continuous and causal operator F acting on the set of equicontinuous
functions o(t) on [0,T] can be represented to any desired degree of accuracy by

a sum of multiple integrals:

t
t

F[Ugt)]

i

Kl(t,rl)c(rl)drl + ...

o~t . (17)

+ . Km(t,T coes Tm)o(rl)...o(Im)dT dTm

1° 100

0 0
where the kernels Ki are determined by the operator independently of the argu-
ment function o(1) and they are continuous functions of Ty In the case where F

is time-invariant, Ki become continuous functions of t-t..

& . ‘
For a review of this subject see [10].
Joss
For a definition of equicontipuity or compactness see [12].
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If we are to use (17) to represent mechanical behavior of a given solid then
we must conduct a multiple experiment aimed at the determination of (a) the number
of terms to be retained in (17) for a desired degree of accuracy and (b) the kernels
defining these terms.

A multiple experiment based on the loading prograﬁs (7) discussed in the
previous section would shed light on both items. We observe first that for stress
histories (7) the sum (17) would become a polynomial of degree m in o, and 0,.

If the experiments suggést that f(ol,c2) can be represented adequately by a
polynomial, say, of third degree then the indication would be that the first three
integrals should be retained in (17). One could then conduct further tests in-
volving more complicated strain histories, say, histories comppsed of three or
four linear segments, to see whether this initial guess remains a good one.

Such tests would also help to determine the structure of the relevént kernels Ki'

Studies which follow this .approach have been conducted by Ward and Onat [6],
Lifshitz [13] and Onaran and Findley [14] for non-linear polymers.

Indications are that for polymers studied in the above-mentioned work, non-
linearity in behavior, which occurs when stresses become relatively large, can be
adequately represented by the first few terms of the sum (17).

For metals a different situation appears to exist. We have shown in the
previous section that for a rigid pléstic material the representation of f(Gl,GQ)
by a polynomial would require a préhibitively larger number of terms. This would
mean therefore that a large number of terms would be needed in the Fréchet sum
for the same material. At first sight this would not cause any concern since other
means of representation are known for such solids. However, recent work by Wang
and Onat [15] on creep of an alumi?um alloy at elevated temperatures, showed that
for this material the representation of the strain reéponsé 5(01502) to loading
programs composed of two steps of magnitudes o, and o, would also involve a poly-

1 2

nomial of high degree in o and Oy This is partly due to the fact that the
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function 6(01,02) behaves differently over the domains characterized by the in-

equalities o0, > 0, and 0y > 0.

This observation indicates that aluminum retains the piece-wise smooth
behavior associated with plasticity ih spite of the occurrence ofrviscou5ﬂeffects
at high temperature,

The above remarks show that there exist solids of interest for which the

Fréchet description of mechanical behavior would involve a large number of terms

for stress histories of interest. Such soiids may be said to be strongly non-
linear. Since a constitutive law of the type (17) containing a large>number of
terms is likely to be cumbersome in applications, it may be appropriate to look for
more convenient representations of mechanical behavior for strongly nonlinear
solids.

For this purpose one could try to generalize the notion of pilece-wise
smooth functions to operators and fﬁnctiqnals° Representation of a piece-wise
smooth functional would involve a sum of the type (17) containing a few multiple
integrals whenever the argument functions‘lié in a given sub-domain of the space
.of argument functions. When one goes to an adjacent sub-domain then a different
but equally simple integral representation would take over. An attempt in this
direction has been made by Onat and Wang in [4], where they discuss order sensi-
tive, piece-wise smooth (or linear) functionals.

Representation of mechanical behavior could, in certain cases, be based
on a system of differential equations. As will be seen in sections 6 and 7, this
mode of representation is intimately connected with the notions of state and of
state variables. We will see in section 8 that representation by differential

equations 1is particularly suitable for strongly nonlinear solids.
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6. REPRESENTATION OF MECHANICAL BEHAVIOR BY DIFFERENTIAL EQUATIONS IN LINEAR

VISCOELASTICITY

In this introductory section and in the sections which will follow, it will
be more convenient to regard strain histories as inputs and stress histories as
outputs.

We consider a time-invariant linear solid defined by the constitutive law:
t
o(t) = | G(t-1)e(r)dr. (18)
)
We assume that the relaxation modulus G(t) is composed of a sum of exponentials:
-t/Ti

n
G(t) = % G;e , (19)
i=1

where Gi and Ti are positive constants.
We introduce the following n quantities

t -(t-1)/T; .
q. = | e e’ (t)dr, (20)
0

and observe by taking the time derivative of (20) that

qi(t)
T.
1

q; () + = e’ (t). ' (21)

On the other hand a combination of (18), (19) and (20) provides the equation

n
o(t) =i§l,eiqi(t)u (22)

We now observe that (21) and (22), together with the initial conditions
9; =0 when t =0 Seoeo (23)

which follow from (20) can be regarded as the differential equation representation
of the mechanical behavior of the solid (18).

It is important to note from (21) and (22) ¥%§%$%B%Q?§§AE¥ known at a given
AMIND, ¥
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time t, then o(t) can be determined for T 2 t from the knowledge of e'(t) or
equivalently from the knowledge of e(1) - e(t) for v 2 t. Thus if the strains
are measured for T 2 t with respect to the configuration at time t, the behavior

of the solid on [t,T] will depend only on the strains on [t,T] and on the q; at

time t. This remark suggesté that q; may be called state variables. The existence

of a finite number of state variables implies that the mechanical behavior of
the solid does not depend on all the details of the strain history. As can be
seen from (20), those "components" of the strain rate histories e’(t) which are

- 1/T,
"orthogonal" to the functions e * do not contribute to q4 and therefore do not

: ) E3
affect the future behavior of the material.

7. THE CONCEPT OF STATE. REPRESENTATION BY DIFFERENTIAL EQUATIONS.

Consider a set of specimens which have been subjected to some strain
histories on the interval [0,t]. We apply to these specimens further strains
on [t,T]. We denote the strain on [t,T] based on the configuration at time t

by € (1). In the present case of small strains we have, of course,
13
e (1) = e(t) - e(t), T2t | (24)

where €(t) and €(7) are the strains referred to the zero state.

We shall say that a set of specimens are in the same state at time t if

P

any pair of identical strain histories € (1) on [t,T] produce in any two of these

specimens identical stress histories on [t,T].

(1)

The test pair shown in Fig. 3 suggests that the strain histories ¢ and

(2)

£ on [0,t] may have produced the same state at time t. In order to make sure

that this is actually the case one must conduct further test pairs using the same

(1) (2)

strain histories € and € on [0,t], but different € (1) on [t,T].

3
See [16] for a further discussion of this topic.
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A strain history on [0,t] produces a given state at time t. It will be of
interest to know the number of states at time t created by all strain historieé on
f0,t]. This number will, in general, be infinite and some of our future remarks
will deal with comparison of infinities.

For an elastic solid all strain histories on [0,t] which have the same
terminal value e€(t) produce the same state at timé t. Thus all possible states
of an elastic solid at time t can be represented, in the present uniaxial case,
by points on the real axis, each point having the coordinate e(t). We may
therefore say that all possible states of an elastic solid fill the real axis
(or a segment of it, if the magnitude of strains of interest is bounded).

Next we consider a Maxwell solid in its familiar model representation
(Fig. 4). It can easily be seen from the definition of the state that two strain
histories, which at time t give rise to the same elongation in the spring of the
model, produce the same state. Therefore all possible states of the Maxwell model
also fill the real axis,

On the other hand, for the linear viscoelastic solid considered in section 6,
a state is characterized, as we have seen before, by the n quantities a5 so that
the state space, for this material, is n~dimensional. The extreme case occurs when
every distinct strain—history on [0,t] produces a different state. In this case
the state space coincides with the space of input-functions. |

We now restrict the discussion to materials which possess an n-dimensional
state space. The goordinates ofAthe state point will be denoted by q; - During
a test the state point will move in the state space starting from the point
corresponding to the state at 1 = 0.

We wish now to prove that the stress at time t must be a function of qi(t)

and t:

a(t) = f(qi(t),t). (25)
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" The proof follows from the definition of state and from the fact that the operator
F defining the mechanical behavior of the solid assigns continuous o(t) to continu-
ous €(1) on [0,T].

Consider two strain histories e(l), 5(2) on [0,T]. Assume that at time t
‘these histories give rise to the same state. The following continuous strain

history

e(l)(T) on [0,t]
e(t) = (26)
ey + @1y on re,1]

will produce on [t,T], by the definition of the state, the same stress history

(2) (1)

as that produced by € “°. But the stresses caused at time t by e cand €

defined in (26) must be the same by the above mentioned property of the operator

(1) (2)

F. Therefore the stresses at tiﬁe t produced by ¢ and € must be the same,
which proves the assertion.

It can also be shown that if the solid is time-invariant then ¢ in (25)
will depend only on qi(t)°

We now consider the dependence of the state variables q; on the history of

strain. It follows from the definition of state that

q; = FiEQj(F)’t;E*] on [t,T] | (27)

The above symbol means that qi(r) on [t,T] is related by the operator F, to the
history of strain e*(r) based on the configuration at time t, the operator itself
being a function of qi(t) and t. We may assume that the operator F, is continuous
and causal.

Now we observe that s becomes a given function of 1T on [t,T] for a given

history € (1), It is of interest to study the derivative

£ (1) ., = qjt) (28)
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It can be shown that if the operator Fi possesses a Fréchet derivative and if

qi(r) for eh(r) = 0 on [t,T] has a derivative at T = t, then

qi(t) = gi(qj(t),t) + hi(qj(t),t)Eo(t)? (29)

where g; and hi are functions of the indicated afguments.

Equations (25) andf(29)rtogetherﬂwithlthe'initial‘coﬁditions.qi(o) =,q§
constitute a differential equation representation of the mechanical behavior
of the solid. |

That €° appears linearly in (29) is due to the existence of the Fréchet
derivative of Fi which may be too strong a requirement to place upon Fi for some .
solids. It is likely that for solids such as metals where the behavior depends
strongly on whether there has been loading or unloading in the recent past (29)

will have the more general form
qi(t) = fi(qj,e ,t) (30)

and fi will not necessarily be continuous in its arguments.

All that has been said would remain a rather formal mathematical structure
if one cannot give broad rules concerning the types of experiments needed for the
determination of the number of state variables, and of the functions governing
their growth. It would seem that there exists no systematic study of such
questionso* It should be remembered however that one rarely encounters an
entirely unknown material. With each class of materials there is available a
certain amount of knowledge of phenomenological or microscopic nature which pro-
vides starting points in such studies. A brief study of plasticity in the next

section will illustrate this point.

1.
w

Rules based on simple histories of the type (7) should not be difficult to
construct.
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8. ARBITRARY DEFORMATIONS

Green and Rivlin [1] have shown that the functional dependence of stress

on the deformation gradient history must be of the formﬂ
t T
g(t) = D(t) E [g(¥)] D (t) (31)

where ¢ is the stress tensor, D(t) is the tensor of deformation gradients at
time t, QT(t) is its tranépose and T is a tensor valued functional of the étrain
history on [0,t]. Here the tensor e€(t) is an appropriate measure of finite strain.
The above form is such that a simultaneous rotation of the deformed body and
reference framé leaves the stress component unaltered.

In the case where the time-invariant solid is continuous and the components
eij(r) of the strain history belong to a set of equicontinuous functions a straight-

forward generalization of (17) provides the following integral representation

for F:
t
t =
Fij[go(T)] Kijkl(t T)ekl(T)dT +
tt ° (32)
Kijklmn(t-—'rl,t--12)skl(rl)emn('rQ)d'rldr2 + ...
0’0

If the solid possesses symmetry in its reference state at T = 0, then the tensor
valued kernels in the above expression must exhibit certain properties of invari-
ance. These have been studied exhaustively in recent years (see, for instance,
Rivlin [3]).

In the particular case of isotropic solids the above expression takes the

following remarkable form [1]:

% ’ ‘
We assume that at t = 0 elements of the solid are identical and are identically
oriented with respect to a fixed coordinate frame.
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5 t Tt

EEKI'C‘E 0o KB(t"T Sooyg t—T )

1’ B
‘o 0 (33)

[;(rl) ceo g(js) + g(rﬁ) . g(Tl)]dTl ceo dTB

where I is the unit tensor and K;'s are polynomials in the invariants I_ given b
. : B P | : o & y
t t ,
_ T _ _ - "
Ia caw ¢(t Tl, cooy t TB)‘ 'tI‘ §(Tl)'...§(‘[6)
0 o (34)

dTldT,2 oeo dTB

these polynomials being dependent on the arguments shewn in (33).

If the strains are small enough so that terms of degree, say, higher'than
the third may be negiected in comparison with those of the third Qegree, the
exeression (33) can be simplified considerably [17]. ‘If can easily be-seeh that
the simplified expression coptaine t&elve unknown functions; Lockett [17] has
shown how these functions could, in principle; be determined experimentally by
means of Sfrees—relaxation experiments. Experimental studiee based on thie ap-
proach have been reported by Lifshitz [13] and Onaran and Findley [1u4].

The success of this approach depends on the range of validity of the
simplified expression. As remarked Before, for certain polymers the range of
validity may be adequately large, but for metals it may be so small that a
different approach to the problem of representation may be needed.

In theldiscussien of4fhe differential equation representation of

mechanical behavior we restrict ourselves to small deformations. For small

deformations (small shape changes, small rotations) (31) reduces to
t
o(t) = Ele(1)],. (35)
o

where £ now is the strain tensor employed in the classical theory of elasticity.

If one considers a time-invariant material equations (25) and (30) take
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the form“

oij(t) = fij(qa(t)),
(36)
q&(t) = fa(qa(t), e;j(t)),

where-oij and Eij are;, respectively, the components of the stress and strain
tensors, in a fixed rectangular frame. |

| An important question which must be faced at this stage is concerned with
the possible tensorial character of the state variables. The state variables can
be regarded as average quantities describing the microscopic structure of the
solid and therefore it would be natural to expect that they will be tensor valued.

It can also be argued that it would be more convenient to work with tensor

valued étate variables. For instance, if the state variables are tepsor valued
then one could apply recent results [18] on the form invariance to (36) to obtain
a representation appropriate to isotropic solids.
We now consider briefly the representation of elastic-plastic behavior,**

It is convenient in this case to regard the stress histories as inputs. Constitu-

tive equations for an elastic-plastic solid have the following structure, which

is similar to (386):
eiﬁ(t) = Cijklokl(t) + fij(qa(t))’ ' (37)

£ (0..(t),q,(t))as () | (a)
¢ = akl" "ij B k1 (38)
0 (b)

The first term in (37) represents elastic components of the strain, the second

represents the plastic components. The latter depend on the history of stress

Generalization of the definitions of state and state variables to the present
case of arbitrary small deformations is self-evident and will not be given here.
ofe ol

wuy

For a detailed discussion of the stress-strain relations in Plasticity, see [19].
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and hence are functions of the state variables Q-+
In (38) the case (a) occurs when the current stress point is on the yield

surface and is moving out of it at the instant of interest:

-— af °
f(oij(t), qa(t)) = 0 and 3°ij O35 > 0. (a)

The function f which defines the yield surface depends on the history through
the state variables q,-
The case (b) occurs when (i) the stress point is within the yield surface

or (ii) the stress point is on the yield surface, but it is not moving out:

_ fF .
f<0, or f=0 and aoij oij < 0. ()

It may be of interest to comment here on the number n of state variables.
In a similar treatment of Plasticity, Kr¥ner [20] uses, as state variables, the
components of a symmetric second order tensor which is a measure of the disloca-
tion loop density. Green and Naghdi's treatment of Plasticity [21] involves, in
the present context, seven state variables, six of them being the components of
the plastic strain tensor.

In his theory of strain-hardening, Prager [22].assumes that the yield sur-
face moves in the stress space with no change in sﬁape and orientation. Therefore
Prager's theory invﬁlves six state variables.

Experiments are, of coﬁrse, the ultimate source of information on the
number of state variables. Avmultiple experiment based on aiffer%nt stress his-
tories will produce a family of yield suffaces. The number of parameters needed
for a (approximate) description of this family can be taken, as-a.zﬁrst'guess,

as the number of state variables.
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